天津五中 集备组长 高继倩
选择题是高考考试数学试题中的一种要紧题型,它的考查功能很分明,能否迅速、准确的解答选择题,防止考生“小题大做”,这对于后面的解答卷求解及提升卷面总分,都具备举足轻重有哪些用途。借助高考考试数学选择题有且只有一个正确答案的特征,合理排除错误选项而获得一些迅速的间接解法。
1、特殊结论速解
教程第五章《平面向量》部分有一例题, 可推广为要紧结论:“若非零向量-、- 不共线,且-=-+-(,R),则A、B、P三点共线的充要条件是: +=1”
例1:平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足-=-+-,其中,且+=1,则C点轨迹为 ( )
A.3x+2y-11=0 B.(x-1)2+(y-2)2=5
C.2x-y=0 D.x+2y-5=0
剖析:若用一般办法是-=(3-, +3),设点C(x,y),则由x=3-且y=+3,得=-且=-代入+=1得x+2y-5=0
若借助上述结论,可知点A、B、C三点共线,所以点C的轨迹为直线AB,KAB=--,所以选D。
例2:已知等差数列a- 的前n项和为 Sn,若-=a1-+a200-,且A、B、C三点共线(该直线不过点O),则S200等于( )
A.100 B.101 C.200 D.201
2、极限思想妙解
用极限思想有时可帮助大家解决某些范围问题,近似计算问题。对一些直接求解比较困难的考试试题,借助极限的思想来解决它,从而达到简化困难程度有哪些用途。
例3:正三棱锥V_ABC,底面边长2a,E、F、H、G为边AV、VB、AC、BC的中点,则四边形EFGH的面积的取值范围是( )
A.(0,+∞) B.(-a2,+∞)
C.(-a2, +∞) D.(-a2,+∞)
剖析:易知四边形EFGH是矩形,S=EF·FG=-AB·■VC=-a·VC,
因为四边形面积的大小取决于VC的长度,正三棱锥顶点V→底面ABC中心时,
VC→-a,得S→-a2;正三棱锥顶点V→∞(向上)时,VC→+∞, S→+∞,故选B。
例4:函数y=-xcosplayx的部分图象是( )
剖析:由f(-x)=xcosplay(-x)=xcosplayx=-f(x)排除A,C。当x→0+ 时,cosplayx→1,y→-x<0故选D
3、特殊化办法速解
特殊化办法是一种要紧的解题办法,解题时化一般为特殊,用特殊地方或特殊图形探求出待求结果,从而寻求解题思路或达到解题目的。
例5:已知aR,函数f(x)=sinx-a(xR)是奇函数,则a=( )
A. 0 B.1 C.-1 D.±1
剖析:考虑特殊地方,∵xR,∴f(x)在原点有概念,即f(0)=0∴sin0-a=0故选A
例6:过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF和FQ的长分别为p,q,则-+-=( )
A.2a B.-
C. 4a D.-
剖析:如图,把方程y=ax2化为抛物线的规范方程x2=-y,则焦点为F(0,-),焦点弦PQ在变动,所以PF,PQ的长p,q也在变,但在p,q的变化过程中,待求式-+-的结果不变,从而可取PQ平行于x轴时的特殊地方,易求得-+-=4a,故选C。
4、估算法巧解
《高考考试考试说明》需要考察精准计算,近似计算及估算能力。估算法解题常需要运用数形结合,剖析,排除等思想办法。
例7:过坐标原点且与圆x2+y2-4x+2y+-=0相切的直线方程为( )
A.y=-3x或y=-x
B. y=3x或y=--x
C. y=-3x或y=--x
D. y=3x或y=-x
剖析:圆的规范方程为(x-2)2+(y+1)2=-2,如图可知斜率k一正一负,排除C,D。看图估计k为正数时小于1,故选A。
例8:已知三点A(2,3)B(-1,-1)C(6,k)其中k为常数,若-=-则-与-的夹角为( )
A.arccosplay(--) B.-或arccosplay-
C. arccosplay- D. -或-arccosplay-
剖析:由-=-,以点A(2,3)为圆心,-为半径的圆与直线x=6的两个交点C1,C2都是满足题设的点C,可见有两解。故排除A,C. 如图∠BAC2=-,而-与-的夹角为钝角,故选D。